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des Sciences et Techniques du Languedoc 34095, Montpellier Cedex 5, France 
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Abstract. Using the spectral moments method, we studied the inelastic scattering by phonons 
in very long Fibonacci chains. The results show that the pseudo-acoustic dispersion curves 
can be associatedwithBraggpeaks. Theintensity of the acousticphononlinesisproportional 
to the intensity of the corresponding Bragg peak. A study of disordered Fibonacci chains 
shows that the intensity of the phonon lines decreases strongly with increasing disorder. 
These results could explain the difficulties encountered in measurements of the acoustic 
I . .  .des in quasi-crystals. 

1. Introduction 

The purpose of this work is to study the inelastic neutron scattering of a quasi-crystal. 
We do this using the spectral moments method which permits us to obtain a differential 
cross section without any direct determination of eigenfrequencies or eigenvectors and 
which avoids the use of boundary conditions. 

We show that, principally for acoustic modes, one can find some similarities between 
periodic and quasi-periodic systems. We also develop a method to determine directly 
the displacement-displacement correlation function. 

As is well known, many time-independent features of the structure of solids and 
liquids can be studied by neutron scattering using the techniques of neutron spectrometry 
(Brockhouse 1966), the scattering cross section being directly related to the time- 
dependent density-density or Van Hove (1954) pair correlation function. 

If the energy transfer occurring during the scattering is negligible compared with the 
energy of the scattered neutrons, for instance for a set of atoms fixed in space, the cross 
section is expressible in terms of the Fourier transformation of the static pair distribution 
g(r) which describes the average density distribution as seen from a particle of the 
system. In liquid and dense gases, if we do not consider systems approaching critical 
conditions, the pair distributions exhibit short-range correlations which produce classical 
ring patterns, the shape, number and width of the rings depending on the type and range 
of correlation. 

Owing to the periodicity, for a perfect crystal the range of correlation is infinite, 
giving rise to the concentration of the elastic scattered particles in very narrow beams 
(Laue Bragg reflections). If we now consider propagating density fluctuations, scattering 
with energy transfer occurs and the inelastic cross section is now related to the Fourier 
transform over space and time variables of the time-dependent pair correlation G(r, t )  
(Van Hove 1954). For harmonic systems and scattering with exchange of vibrational 
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quanta, the inelastic cross section is directly obtained from the displacement-dis- 
placement correlation function (Glauber 1955). 

In a perfect crystal the displacement field can be developed in plane waves and it is 
easy to show that, from Bloch’s theorem, the frequencies and amplitude vary periodically 
as the phonon wavevector q p h  ranges through reciprocal space. 

Let G be a basic vector of the reciprocal lattice; one then obtains 

w,?(qph -k G ,  = 0 7 ( q p h )  VG (1) 

e j ( q p h  -k = e j ( q p h )  VG (2)  

and 

where w , ? ( q p h )  and ej(qph) are respectively the square of the frequency and the amplitude 
of the phonon ( j ,  q p h ) ,  where j i s  the branch index and q p h  the wavevector. 

Let hQd and h o  be the momentum and energy transferred by the neutron to the 
scattering system, and ko and k the initial and final wavevectors of the neutron. In a 
perfect crystal, one obtains (Brockhouse 1966) 

In (3) the ? sign for q p h  has been omitted by restoring the range of q p h  to the whole 
of the Brillouin zone. Equations ( 3 )  and (4) are a direct consequence of equations (1) 
and (2)  and show that measurement of a given phonon can be performed, in principle, 
in different cells of the reciprocal lattice. This effect is a consequence of equations (2)  
which show that displacement-displacement correlations are identical for wavevectors 
which differ only by a vector of the reciprocal lattice. However, the cells of the reciprocal 
lattice are not strictly identical, the intensity of phonon scattering being modulated by 
a phase factor which depends on the structure of the unit cell. 

For general systems, without any special symmetry properties, equations (3) and (4) 
become 

Q d  = ko - k 
ho = h2ki /2m - h2k2/2m = +hwj. 

( 5 )  

(6) 
j = 1,2 ,  . . . , dN where oj is the frequency of thejth mode with the amplitude ej, d is the 
space dimension and N the number of atoms. 

Recently the discovery of the icosahedral phase (Shechtman et aZl984, Shechtman 
and Blech 1985) has shown that the strictly periodic translational symmetry is not 
necessary to obtain sharp diffraction peaks, the Fourier transform of almost periodic or 
quasi-periodic pair correlation function generating also sharp peaks (for a review see 
Gratias and Michel(l986) and Janot and Dubois (1988)). Spectra and wavefunctions of 
incommensurate and quasi-periodic crystals have been widely studied in one-dimen- 
sional model systems. Three types of model have been specially studied (Janssen 1988a): 
the tight-binding model with an almost periodic potential (Aubry and Andre 1979, 
Kohmoto 1983, Ostlund and Pandit 1984), the modulated spring model (de Lange and 
Janssen 1981) and the modulated Kronig-Penney models (Kollar and Suto 1986). 

The studies have been performed mainly numerically on finite chains either by a 
periodic approximation or by the use of the transfer matrix technique. Recently multi- 
fractal properties of spectra and wavefunctions have been discussed by means of an 
entropy function (Kohmoto 1988, Janssen and Kohmoto 1988). 
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The integrated density of states (IDS) is a Cantor function and the spectra have scaling 
properties. The eigenstates are neither localised nor extended but ‘critical’, and the 
properties of the spectra and wavefunctions are very different from those in periodic 
crystals. Thus it is very interesting to study the physical properties of such systems. While 
many studies concern the properties of the spectra and the wavefunctions, very few 
consider the determination of the physical response of the systems which mainly involves 
the calculation of all eigenvalues and eigenfunctions. This is a difficult problem. Besides 
the academic interest of this study, we were directly motivated by the recent work of 
Janot et a1 (1988) who found difficulties, using inelastic neutron scattering techniques, 
in measuring acoustic modes in quasi-crystals. It will be interesting to know whether the 
difficulties encountered in these measurements arise from intrinsic or extrinsic (faults 
and disorder) properties of the materials. 

In the following we shall study the inelastic neutron scattering from a quasi-crystal 
and analyse the behaviour of the spectrum when the range of the momentum transfer 
covers several Bragg diffraction peaks in the quasi-reciprocal lattice. First, we consider 
a perfect Fibonacci chain (FC) and then a chain with disorder. We compare the results 
with those obtained with a perfectly dimerised chain (PDC). 

2. Models 

For a review of different models used in the study of quasi-lattices, see for instance the 
paper of Currat and Janssen (1988 and references therein). A simple one-dimensional 
quasi-lattice with two basic lengths is defined by giving the location of the nth atom as 
(Lu and Birman 1986) 

where [XI represents the largest integer which is smaller or equal to x ,  ( a ,  p)  E (0, l), s 
is a scale factor, and (T and p are parameters. The lattice defined by (7) has only two 
nearest-neighbour spacings a, = s and al = s(1 + l/p). The average spacing a is given by 

We now assume that (T = p = z = (Vs + 1)/2. t is the ‘golden mean’. One then 
obtains the Fibonacci lattice. It can be shown that the positions of the atoms are the 
superposition of a regular lattice with the period a modulated by a periodic function with 
period (TU. So the FC is an incommensurate system which gives rise to Bragg reflections. 
It is considered a good model for quasi-periodic systems. 

The Fourier transform of the Fibonacci lattice is given by (Lu and Birman 1986) 

r(n> = s(n + a[n/. + Pl)/P (7)  

a = s(1 + l/(Tp). (8) 

d = 1 + l/(Tp. (10) 
The differences between equation (10) of the present paper and equation (8) of the 
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Table 1. Positions and intensity of most intense Bragg peaks (Z/Zo > 0.05), for a perfect FC 
andforamc.  The average atomspacingfortheFcisa = 3.6327 k1 and thelattice parameter 
for the perfect chain is ad = 6.8819 k'. 

FC PDC 

Bragg peaks G, Intensity Bragg peaks Gd, Intensity 
Number m n (k') I(G,) (A-7 I(Gd,) 

1 0 0 0  1 0 1 
2 1 0 1.0689 0.1127 0.9130 0.1313 
3 0 1 1.7296 0.4930 1.8260 0.5437 
4 1 1 2.7986 0.7726 2.7390 0.8042 
5 1 2 4.5281 0.9076 3.6520 0.0076 
6 2 2 5.5971 0.3225 4.5650 0.9218 
7 1 3 6.2578 0.2304 5.4780 0.3702 
8 2 3 7.3267 0.9638 6.3910 0.2695 
9 2 4 9.0563 0.6780 7.3040 0.9696 

10 3 4 10.1253 0.6032 8.2170 0.03782 
11 2 5 10.7859 0.0617 9.1300 0.7119 
12 3 5 11.8549 0.9860 10.0430 0.6496 
13 4 5 12.9238 0.1805 10.9560 0.0674 

paper of Lu and Birman (1986) arise from the presence of the scale factors. Here zm,n 
is a dimensionless term. F(q)  is never equal to unity but can be very close. 

As we have seen, several types of model have been used in the study of the properties 
of the spectra and the wavefunctions of a FC. However, it is reasonable to assume that 
the elastic constants depend only on the bond length, and that neighbouring sites are 
more strongly coupled if the distance between them is smaller. So, here, we choose the 
spring model with two force constants. This model is equivalent to the modulated-spring 
model with a discontinuous modulation function (Janssen and Kohmoto 1988). This 
model has been widely studied by Lu et a1 (1986), Kohmoto and Banavar (1986), Luck 
(1986) and Luck and Petritis (1986). 

In order to obtain results which are directly comparable with experiments, we assume 
that we are dealing with a chain of aluminium atoms. For the elastic force constant k l  
of the short bonds, we choose the x-x force constant between nearest neighbours of 
the model of Walker (1956) for aluminium ( k ,  = 7.83 x lo3 dyn cm-l). For the long 
bonds we have taken the elastic constant k2 = fk, following the work of Luck (1986) 
and Luck and Petritis (1986). The scale factors is taken equal to 5 sin 8 where tan 6 = 
(fi - 1)/2. The scale factor is 5 if we construct the FC by the projection method of a 
2D square lattice with unit periodicity (Luck 1986). So the length of the short and long 
bonds are, respectively, 

and 
a, = 5 sin 8 

al = 5 cos 6. 
We have reported in table 1 the positions qm,n and intensities Z(q) = I F ( q )  I * of the 

13 most intense Bragg peaks (Z(q)/Z(q = 0) > 0.05) for the FC and for the 13 first Bragg 
peaks of the PDC. 

It is easy to realise that the short and long bonds appear, respectively, with the 
frequencies t/(l + t )  and 1/(1 + t )  ( t  = 1 / ~  = tan 6 ) .  The total length lof the chain with 
L bonds is 
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Table 2. Relative intensities of Bragg peaks for several concentrations C of defects. 

Disordered FC 
~ 

I / I ,  for the following defect concentrations C 
Bragg peaks G,  

Number (A-') c =  1% c =  10% c = 20% 

1 0 1 1 1 
2 1.0689 0.57 0.27 0.15 
3 1.7296 0.49 0.21 0.09 
4 2.7986 0.58 0.28 0.15 
5 4.5281 0.83 0.43 0.22 
6 5.5971 0.49 0.20 0.08 
7 6.2578 0.47 0.20 0.15 
8 7.3267 0.66 0.53 0.45 
9 9.0563 0.57 0.26 0.14 

10 10.1253 0.47 0.20 0.15 
11 10.7859 0.34 0.36 0.16 
12 11.8549 0.60 0.43 0.42 
13 12.9328 0.57 0.25 0.13 

1 = h { t / ( l  + t )  + [I/(I + t)](1 + l/z)} = LS(I + 1 / t 2 )  (11) 
in agreement with the definition of average spacing a (equation (8)). 

In the disordered FC, we suppose that defects are randomly distributed in space. We 
consider defects as a change in the nature of the bond, short bonds becoming long bonds 
and vice versa. We have reported in table 2 the integrated intensity of principal Bragg 
peaks of the disordered chain for several concentrations of defects. 

3. Methods of computation 

Now we consider the expression for the coherent inelastic scattering cross section of 
slow neutrons: 

o > 0 corresponds to neutron energy loss, and o < 0 to neutron energy gain. For a one- 
dimensional system, with Qd = Qdu (U is a unit vector parallel to the chain), 

ej(n), m,, b,, exp[w(n)] are, respectively, the nth component of amplitude of the jth 
mode with frequency oj ,  the atom mass, the Fermi scattering length and the Debye- 
Waller factor of the nth atom; nj = n(wj) is the Boltzmann factor. 

Determination of (12) and (13) needs the calculation of eigenfrequencies and eigen- 
vectors of the dynamical matrix which is not easy for large systems without perfect 
periodicity. Usual diagonalisation fails for systems greater than about 350 atoms, in one- 
dimensional space, which is very few atoms if we want, for instance, to study with 
accuracy the propagation of sound waves. It is possible to use a commensurate perfect 
lattice with a large unit cell (Janssen 1988b). However, we lose the quasi-periodicity 
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aspect of the system. For the problem treated here, with interaction between first 
neighbours only, one can use the method of transfer matrix (Lu et a1 1986, Kohmoto 
and Banavar 1986, Luck 1986, Luck and Petritis 1986) although the determination of 
eigenvectors is not a very easy problem. As we need to calculate a great number of 
spectra for very large systems, we have therefore used the spectral moments method 
(Benoit 1987, 1989) which permits us to determine the differential cross section for 
systems as large as N > 2 X lo6. In this method we extract, directly from the dynamical 
matrix, only the active modes in the processes studied, with the correct intensity. We do 
not calculate those eigenfrequencies and eigenvectors of the dynamical matrix that we 
do not need. With this method, one determines the generalised moments of the function 
S(q, o) for o > 0 such that ( p  = l /kT)  

k d 2o 
S(Qd, o) = - [l - exp(-@ho)] ~ 

k0 dS2do  

From knowledge of the moments, we calculate the scattering cross section itself. 
However, it is well known that the moments method presents difficulties in the low- 
frequency part of spectra. So, if we want to study the propagation of the sound wave, 
we have to check carefully the results obtained by this method. 

For instance the frequency of the sound wave is about 0.06 THz for q p h  = 0.01 A-'. 
The maximum frequency vmax is equal to 3.56 THz. As one works with the squares of 
the frequencies the spectral region which we are interested in lies only in a thousandth 
of the total spectral range. In order to test our method we have compared our results 
first with the results obtained by direct diagonalisation (for systems with 145 atoms, 
F1 = 12) and secondly for longer chains (for up to 4182 atoms, F ,  = 19), with the results 
of a new method, based on the Gauss-Jordan elimination procedure. This method is 
developed in the appendix. Excellent agreement is obtained between the moments 
method and the method based on Gauss-Jordan elimination, if we use at least 100 
generalised moments (figure 1). The length of the chain will be varied from 145 to 
2 178 000 atoms. For more details concerning the computation procedure, see Benoit 
and Poussigue (1989). 

4. Results 

To analyse the phonon spectrum of the FC, we follow the same steps as for perfect 
crystals. Having computed the positions G, of Bragg peaks (table l), we define a vector 
q p h  such that, by comparison with (3), 

Q d  = ko - k = G ,  - q p h .  (15) 
Here, q p h  is not a good quantum number and does not correspond to the pseudo- 
momentum of a phonon. Exception must be made for acoustic waves which correspond 
to a translation of the whole system and which do not depend on the particular structure 
of the material. 

We first focus our attention on acoustic modes. We have computed the phonon 
spectra near every Bragg peak for a momentum transfer such that q p h  has a constant 
value equal to 0.005 A-'. We obtain, for the 13 spectra, exactly the same shape (figure 
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U- 

d o+.---- I 7 
0.056 0 OM) 0.064 

Figure 1. Detail of the low-frequency part of the 
differential cross section of a FC ( N  = 4182 atoms; 
F, = 19) calculated with 100 moments for Qd = 

0.01 A-'. The exact value of v, is 0.060 078 THz, 
and the calculated value of v s  is 
0.060 08 ? 0.000 04 THz. The CPU time is 5.83 s. 

v ( T H z l  

4.518 17 A-', G5 = 4.528 17 A-' and q p h  = 

G ,  ;; 0 j.- _- . -  __ _____ 
7 v - 7 ,  ~ 

L. .-. 
.- 

0 0.1 0.2 0 . 3  0 .4  

Figure 2. Low-frequency part of the differential 
cross section of a FC ( N  = 4182 atoms; F, = 19) 
calculated with '100 moments for Qd = 

0.01 A-'. 

v ITHz)  

4.518 17 A-', GS = 4.528 17 A-' and q p h  = 

2); a strong peak appears, with exactly the same frequency in each spectrum. To be sure 
that the observed peaks arise from acoustic modes we used two types of test: first we 
checked that the frequency of peaks varies linearly with the wavevector q p h  = G, - Qd; 
secondly we compared the calculated value of the velocity of sound with the exact value 
which can be determined theoretically in a FC. The velocity of sound is given in a linear 
chain by 

where C is the elastic constant and p = m/a the specific mass. 
U = v/c/p (16) 

a x x  = cuxx (17) 

If U,, is the deformation tensor we have 

where a,, is the stress-tensor and U, = dU,(r)/dr,. U,(r) is the displacement of point 
r under the stress a,,. Under stress the length of each bond increased by dli such that 
dli = ax,/ki. The total length variation of the chain is given by 

where n, and nl are the number of short and long bonds, respectively. From (11) and 
(18), one obtains 

where r = 1 is the length of the chain and from ( l l ) ,  (16), (17) and (19) one obtains for 
the velocity of sound 

uxx = (ns/kl + nl/kZ)Oxx{r/S[ns + nl(1 + 1/m 

U = a V (  1 + t)K/m 

(19) 

with 
1/K = t/kl + l/k2. 

Let us remark that for a perfectly dimerised chain, with ad = al + a, as the lattice 
parameters, and k l  and k2  as the elastic constants, one obtains 
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1 6  

0 5 10 
G, th-'1 

Figure 3. Results for several sample lengths: A, N = 611 atoms; *, N = 1598 atoms; 0, N = 
4182 atoms. The upper part of the figure shows the ratio of intensity of the acoustic phonon 
lines (qph = 0.005 A-') to the intensity of the corresponding Bragg peaks, and the lower part 
the calculated positions of the acoustic phonon lines (qph = 0.005 k'; exact value Y = 
3.0039 X THz). The results do not change for chains with size greater than N = 4182. 

u d  = a d u m  

with 

1/Kd = l /kl  + l/k2. (21) 
With the numerical values used here, one obtains U = 377481cms-' and u d =  

371 338 cm s-'. 
One finds that the position of the low-frequency peak (figure 1) agrees perfectly with 

the theoretical values v = uqph/2z 
The same results are obtained for every Bragg peak, the intensity of the acoustic 

phonon lines being proportional to the intensity of the corresponding Bragg peaks 
(figure 3). Identical results are obtained with the PDC. The length of the FC used for the 
calculation is equal to or higher than 4182 atoms. For shorter chains, the position and 
intensity of the phonon peaks are dependent on Bragg peaks and chain length (figure 

It is known that in a FC a crossover between two regimes appears at the value of v 
3). 

for which the size 1 is of the order of magnitude of the length 2j such that 

f = exp(C/v) (22) 
where C is a constant for a given force model (Luck and Petritis 1986). For 14 E the 
states (eigenmodes) behave as Bloch states while for 1 % 2j the states are in critical 
regime. For the acoustic modes considered here, we are therefore dealing with Bloch 
states, for all I, and the dependence of the position and intensity of the phonon peaks 
with the length of the chain arises from classical boundary effects. 

We show in figures 4 and 5 the positions and intensities of phonon peaks for the FC 
for a momentum transfer such that G4 < Qd < G5 (figure 4) and G9 < Qd < Glo (figure 

For comparison we have also calculated the positions and intensities of phonon peaks 
5 ) .  

for the PDC with GS < Qd < Gg (figure 6). 
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. . : e . . . : . .  
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, a ,i . . '** ' 7  

Figure 5. Pseudo-dispersion curves of a FC cal- 
culated by spectral moments method with 100 
moments for Qd lying between the two strong 
Bragg peaks GI1 and GI2. G" is a Bragg peak 
intensity less than o.0510. The intensities of the 
peaks are suggested by the dimensions of the dots. 

Figure 4. Pseudo-dispersion curves of a FC 
calculated by the spectral moments 
method with 100 moments for Qd lying 
between the two strong Bragg peaks G4 
and GS.  G' is a Bragg peak of intensity less 
than0.0510. The intensitiesof the peaks are 
suggested by the dimensions of the dots. 

4 

1 

1 

!i b 

I I 

Figure 6. Dispersion curves of a dimerised chain 
( N  = 4182 atoms) calculated by spectral moments 
method with 100 moments. The intensities of the 
peaks are suggested by the dimensions of the dots. 

It is easy to show that the differential cross section follows a sum rule for a given Qd. 
From (13) and (14) one obtains using the closure properties of eigenvectors: 

b2 exp(-2w) 
m 

jomS(Qd, w)2w dw = s(Qd, U) du = NQ', 

with 
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Figure 7. IDS of a FC with m = 26.98g, k ,  = 

7.83 X lo3 dyn cm-' and k 2  = k , / 2 .  

Thus near strong (weak) Bragg peaks we must obtain strong (weak) acoustic phonon 
lines and weak (strong) optical phonon lines. We observe in figures 4-6 that the spectra 
are in good agreement with this sum rule. Pseudo-acoustic dispersion curves are associ- 
ated with every Bragg peak. However, let us remark that the curves obtained are not 
equivalent to the classical dispersion curves obtained in perfect crystal. We show in 
figure 7 the IDS. Its most characteristic point is the presence of gaps at all frequencies. 
In other words the spectrum has no absolutely continuous component. However, in the 
spectral moments method, one introduces an imaginary part in the frequency (Benoit 
1987). This quantity may represent the finite lifetime of phonons and/or the finite 
resolution of the apparatus. So the small gaps, which may not be experimentally dis- 
tinguishable, are smoothed, giving rise to a low-frequency quasi-continuous acoustic 
dispersion curve. 

In addition, we observe an acoustic peak if the momentum transfer is such that 
the frequency deduced from the pseudo-dispersion curves lies in a gap. In regions of 
reciprocal space where it is not possible to define a dispersion curve (see for instance the 
centre of figure 4), there are no acoustic modes but strong optical modes. Another 
important difference compared with the periodic lattice arises from the nature of the 
Fourier transform of the density function. 

We know that Bragg peaks are dense in reciprocal space and we have seen that we 
can attribute a set of pseudo-acoustic dispersion curves to every Bragg peak. Thus, for 
a given momentum transfer Qd, one obtains an infinity of phonon lines corresponding 
to the infinity of Bragg peaks (for an infinite FC). However, their intensity is generally 
very weak. We can see in figures 4 and 5 that, for instance, the frequencies of some weak 
peaks agree very well with pseudo-dispersion curves which can be attributed to Bragg 
peaks G' (figure 4) and G" (figure 5). These peaks have not been taken into account 
until now, their intensity being less than 5% of intensity of the central (Q ,  = 0) Bragg 
peak. 

In the 'optical' region, several peaks appear. Their frequencies do not behave in a 
clear way. The positions found for different momentum transfers correspond to 3.20, 
3.24,3.26,3.28,3.42,3.44,3.54 and 3.56 THz. The boundaries of the principal phono:i 
bands, in this region, are found at 3.18-3.20, 3.22-3.28,3.38-3.44 and 3.50-3.56 THz. 
Thus the frequencies of these phonon peaks correspond more generally to the high- 
frequency side of the phonon bands. The same types of result are found with peaks in 
the 2-2.5 THz region. Peaks found at 2.18,2.32 and 2.50 THz correspond to the upper 
part of the phonon bands. However, the peak at 2.42 THz corresponds to the centre of 
a phonon band (figure 7). These results could be compared with the rough empirical 
rule of Luck and Petritis (1986) who find that, thefarther a state is from the large gaps 
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in the spectrum, the more it looks like a localised state. So the more intense phonon 
peaks should arise generally from the less localised states. 

In order to obtain more information on the dynamics of the system we show in figures 
8 and 9 the Fourier transform of the displacement-displacement correlation function 

The method used to obtain these quantities is based on Gauss-Jordan elimination 
(Un(4 U”. 

-0.0211 I 1 
i , , I I I 

-0 06; , I I I 

-0 9 J  
1 -  

0 200 400 600 800 1000 1200 1400 1600 
n 

Figure 8. Fourier transform over time 
G(n, n’, v) of the displacement-displace- 
ment correlation function ( Un(t) LT,,(O)) 
calculated for a dimerised chain ( N =  
1598 atoms) by the Gauss method with 
n = 799 and y = 2 X W’THz; (a) U = 
O.1THz; (b )  v = 1THz; (c) v = 
3.56THz. 
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and is developed in the appendix. This method can be applied with any type of system 
and is very efficient. 

In figure 8 we show, for comparison, the results obtained with the PDC. The results 
for the FC are shown in figure 9. These quantities do not represent particularly the states 
of the system. The physical interpretation of these correlation functions is simple only 
in the classical limit, when they become real. 

(U,(t)U,,(O)) gives a measure of the extent to which the displacement of the atom n 
at time t is influenced by the fact that the atom n' suffered a displacement U,,, at time 

-0.91 
I I I I I I I r 

I 
2' 

-1 4 

-2  j 
Figure 9. Fourier transform over time 
C(n ,  n', v) of the displacement-displace- 
ment correlation function (U,,(t)U,.(O)) 
calculated for a FC chain ( N  = 1598 atoms; 
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zero, For the PDC (figure 8) the motion is not localised whatever the frequency while for 
the FC we observe that the localisation of motion increases as the frequency increases. 

Figures 8 and 9 have been obtained with the same value of the phonon lifetime y (see 
(A4)). If y is large enough, several modes with neighbouring frequencies can be involved 
in the calculation of the correlation functions, giving rise to a rapid decrease due to the 
interference. However, if y is small, only one mode will be involved in the summation 
over j in equation (A10) and one obtains the corresponding eigenvectors. The results 
for two values of y are shown in figure 10 for v = 1.7 THz for a chain with 4182 atoms 
(F, = 19). Figures 9(b) and 10(a) obtained with the same value of y show that no large 
change occurs for higher N. Figure 10(b) does not change for smaller y and so we believe 
that it represents the eigenstates for this frequency. This result is not in contradiction 
with previous works on this subject. The most interesting result is that, in quasi-crystals, 
the presence of very small damping yields a strong localisation of the motion. This effect 
is significant even at low frequencies (figure 9(a)) and has certainly large consequences 
on transport properties, for instance. 

We discuss now the dynamics of a disordered FC. We recall that we consider a change 
in the nature of the bonds as disorder. We have shown in table 2 the variation in the 
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Figure 10. Fourier transform over time C(n,  n’, U) of the displacement-displacement cor- 
relation function (Un(f)U, , , (0))  calculated for a FC ( N  = 4182 atoms; Fi = 19) by the Gauss 
method with n = 2091 and U = 1.7 THz: (a)  y = 2 X THz; (b)  y = 2 X THz. 
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intensity of the Bragg peaks for several values of the disorder C, which is the ratio of the 
number of modified bonds to the total number of bonds. Bonds are randomly changed. 
This procedure does not produce a genuine disordered system; we see that, if we change, 
for instance, all bonds (C = l), we again obtain a FC. We observe several effects; the 
positions of the Bragg peaks are slighly shifted while their intensity decreases strongly. 
However, the decrease strongly depends on the peaks; for instance very strong peaks 
decrease much less than weak peaks. 

Examples of the differential cross section for a perfect FC and a disordered FC are 
shown in figures 11 and 12. We observe a large decrease in the intensity of the peaks 
associated with an increase in their width. We observe also the appearance of new peaks 
in the spectrum. Several peaks are located in the gaps of the perfect FC; others appear 
with frequencies higher than the maximum frequency (3.56 THz) of the perfect FC. 

The change in the intensity of acoustic and optic modes with increasing disorder is 
shown in figure 13. We observe that the intensity of the acoustic modes decreases strongly 
with increasing disorder. The change is weaker for the 'optical' modes. The difficulties 
encountered in the measurements of acoustic modes in neutron scattering experiments 
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Figure 11. Differential cross section calculated 
with 100 moments for Qd = 4.2138 A-', G j  = 
4.5282 A-' and qph = 0.3144 k': ( a )  perfect FC 
( N  = 4182 atoms); (b)  disordered ( C  = 20%) FC 
( N  = 4182 atoms). 

v ITHzl 

Figure 12. Differential cross section calculated 
with 100 moments for Qd = 3.8993 kl, G j  = 
4.5282 A-' and qph = 0.6289 A-': (a )  perfect FC 

( N  = 4182 atoms); (b )  disordered (C = 20%) FC 
( N  = 4182 atoms). 
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I \  

Figure 13. Variation in the ratio of intensity of some phonon lines to the intensity of the 
correspondingBraggpeaksforseveralvaluesofdisorder: 0, Qd = 4.371 k', v = 0.94 THz; 
A ,  Qd = 4.210 k', v = 1.70 THz; 0, Qd = 4.058 A-';  U = 2.44 THz; W ,  Q d  = 3.584 k'; 
v = 3.54 THz. 

can therefore be explained by the presence of disorder which destroys the pseudo- 
similarity, in quasi-crystals, between the different zones of the reciprocal space. 

5.  Conclusion 

The present work shows that neutron scattering by phonons in quasi-crystals has very 
interesting features. We have shown that it is possible to define for the stronger Bragg 
peaks pseudo-Brillouin zones which play a role highly analogous to the Brillouin zones 
of perfect crystals. For instance the phonon spectra present a great similarity between 
different zones, although their widths are often very different. Another interesting result 
is the possibility of measuring acoustic dispersion curves near strong Bragg peaks 
although the system exhibits very particular spectra and wavefunctions. The most 
surprising is that these dispersion curves can be followed very far from the Bragg peaks 
and that the intensity of the phonon lines does not present any drastic change as we go 
away from the Bragg peak. From the neutron scattering point of view there is no evidence 
of critical properties of the eigenstates. However, because the spectrum is a Cantor set, 
it is not possible to consider these curves as equivalent to classical dispersion curves of 
perfect crystals. From the correlation function we have shown that the eigenstates are 
certainly neither extended nor localised in the usual sense and that transport properties 
are certainly strongly dependent on the damping of vibrations. 

Concerning the measurement of acoustic phonons we have shown that, to obtain 
good results, it will be necessary to choose a region of reciprocal space near a strong 
Bragg peak and more exactly between two strong Bragg peaks. So the method of study 
of a quasi-crystal is identical with the methods used with perfect systems and the 
difficulties in the measurements of acoustic phonons arises certainly, as we have shown, 
from disorder. However the model developed here is ID and it is necessary to develop a 
3~ model. 
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Appendix. Direct inversion method 
Al .  Calculation of the response function 

We develop here another method which can be used to determine the spectra of non- 
periodic harmonic systems. In previous papers (Benoit 1987,1989) we have shown that 
infrared, Raman and inelastic neutron scattering spectra could be obtained from the 
following relations: 

g(u) = - ( l /n )  lim Im[~(z) ]}  
E’O+ 

with u = U*, z = u + ieand 

R ( z )  = ( 4  I(z1 - D) -lIq) 

where D is the dynamical matrix and I q)  is a vector which depends on the type of process 
studied and is assumed to be known. For instance the components of 1 q)  are ionic charges 
if we study the infrared absorption. Now, if we consider (A2), we observe that R(z )  is 
just the scalar product of 1 q )  with a vector lx) such that 

(21 - D) Ix) = 14). (‘43) 
Equation (A3) represents a system of linear equations. It is a classical well known 

problem. Here (zl - D) is a complex and sparse matrix; so it is necessary to adapt 
programs. We have used the Crout reduction of the Gauss-Jordan L-R decomposition 
method (Isaacson and Keller 1966). With the model used here where the matrix is 
tridiagonal, the method is straightforward, the diagonal elements never being equal to 
zero from the analytic continuation in (Al) .  The results show that, as it is necessary to 
calculate Ix) for every frequency, this method requires much more computer time than 
moment methods do. However, this method can be more accurate than the moment 
methods particularly in the low-frequency part of the spectrum. 

We have used this procedure to check the convergence of the spectral moments 
method for systems with N S 10 000 atoms. As for the moments method the scattering 
cross section is obtained in terms of w by setting 

which gives a constant width in the spectrum and by multiplying g(u) by 2w. 
e = 2yw (A41 

A2. Correlation functions 

Another possibility of the direct inversion method is the determination of the Fourier 
transform of the displacement-displacement correlation function G(n, n’ , U). 

The displacement-displacement correlation function is given by (Maradudin 1969) 

G(n, n’, t )  = (u,(t)u,,(O)) 
ej(n)ej(n’) 1 

=+ m,,- - 2wj  [(nj  + 1) exp(-iwjt) + nj exp(iwjt)] 

where ( ) means that the statistical average is taken. 
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Now we consider the Fourier transforms of G(n, n’,  t ) :  

(u,(t)u,,(O)) exp(iwt) d t  
2Jd 

ei(n)ei(n’) 1 = F r  mn% 2oi 
- [(ni + 1)6(0 - w j )  + ni6(w + w j ) ] .  

We consider the correlation function only for w > 0 and T -  0. So it is equivalent to 
calculate a function G’ which is identical with G(n, n’, w )  for w > 0 and T+ 0 but it is 
symmetrical. The interest in this change is that G‘ is a function of the square of the 
frequency and we can work directly with the dynamical matrix: 

ej(n)ei(n’) 1 
G’(n, n’,  o) = - [6(w - ai) + 6(w + m i ) ] .  

j t /m,-20j 

when Ai = w f  , 

Using Dirac bracket formalism 

one obtains 

with 

R,,,( (2) = (n  I (zl - D)-’ In’). (A10) 
Equation (A9) shows that RnJ.z) is the scalar product of the vector (n 1 ,  which has 

only one component different from zero, with the vector Iy) such that 

In’) = (21 - D)-’Iy) ( A l l )  
where the vector in’) is known. Hence one uses the same method as for R ( z ) .  
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